
Common Tools
for Team

Collaboration

Problem:

Working with a team (especially
remotely) can be difficult.
▹ Team members might have a

different idea for the project
▹ Two or more team members could

end up doing the same work
▹ Or a few team members have

nothing to do

Solutions:

A combination of few tools.
▹ Communication channels
▹ Wikis
▹ Task manager
▹ Version Control
￭ We’ll be going in depth with

this one!

Important!
The tools are only as good
as your team uses them.

Make sure all of your team
members agree on what

tools to use, and train them
thoroughly!

Communication
Channels

Purpose:

Communication channels provide a
way to have team members remotely
communicate with one another.
Ideally, the channel will attempt to
emulate, as closely as possible, what
communication would be like if all of
your team members were in the same
office.

Wait, why not email?

▹ No voice support
￭ Text alone is not a sufficient

form of communication
▹ Too slow, no obvious support for

notifications
▹ Lack of flexibility in grouping

people

Tools:

▹ Discord
￭ discordapp.com

▹ Slack
￭ slack.com

▹ Riot.im
￭ about.riot.im

Discord:

Originally used for voice-chat for
gaming, Discord provides:
▹ Voice & video conferencing
▹ Text communication, separated

by channels
▹ File-sharing
▹ Private communications
▹ A mobile, web, and desktop app

Slack:

A business-oriented text
communication that also supports:
▹ Everything Discord does, plus...
▹ Threaded conversations

Riot.im:

A self-hosted, open-source
alternative to Slack

Wikis

Purpose:

Professionally used as a collaborative
game design document, a wiki is a
synchronized documentation tool
that retains a thorough history of
changes that occured on each page.
Most wikis provide easy editing,
linking, and commenting.

Wait, why not Microsoft
Word?

▹ Can’t be synced with other users
(except the online!)

▹ No way of providing real-time
feedback

▹ Flexible linking between
pages/documents

▹ Provide file attachments
▹ Not free

Tools:

▹ Notion
￭ notion.so

▹ Google Docs
￭ docs.google.com

▹ TiddlyWiki
￭ tiddlywiki.com

▹ MediaWiki
￭ mediawiki.org

Notion:

An all-in-one note-taking solution.
Features include:
▹ Lists and checklists
▹ Task management modules
▹ Calendar
▹ Attaching and sharing files
▹ Commenting
▹ Team member assignment

Google Docs:

Technically not a wiki, but it does
support real-time collaborative
editing:
▹ Commenting
▹ History tracking and reverting
▹ Auto-generated table of Content
▹ Embedding other Google services,

including Sheets

TiddlyWiki:

An offline-supporting wiki, this
single-HTML file uses a note-like
interface. It supports:
▹ Creating links that automatically

creates a new page.
▹ Aggregation and site mapping of

all notes.
▹ Online collaboration support.

MediaWiki:

Primarily an online wiki, MediaWiki
powers Wikipedia:
▹ File sharing
▹ Extensions
▹ Forums
▹ History tracking

Task Manager

Purpose

Lists out the tasks left in a project,
who is responsible for handling the
task, and what state the task is in.
Also provides grouping tasks, marking
a task as dependent/blocking
another, provide subtasks, etc.

Wait, why not a good-old
checklist?

▹ Can’t be synced with other users
▹ No way of providing real-time

feedback
▹ Hard to categorize tasks
▹ Hard to indicate estimates on how

long a task takes
▹ Difficult to group tasks

Some Notes About the
Following Tools:

Most modern task management tools
are either built for Agile development
process.
▹ Agile focuses on always having a

working project after every “sprint”
▹ Sprints are typically two weeks

long.

Some Notes About the
Following Tools:

▹ Sprints builds on top of each other
to reach a “milestone,” a
longer-term goal.

▹ To support these goals, tasks are
often categorized to a specific
sprint, which in turn is categorized
to a milestone.

Some Notes About the
Following Tools:

Finally, most task managers follow
the kanban board design.
▹ Checklist statuses are binary,

either checked or unchecked.
▹ Kanban’s equivalent of a “status”

are lists, i.e. the list a task is in
marks the status of that task.

Some Notes About the
Following Tools:

Common list names include:
▹ Suggestion
▹ In Sprint
▹ In Progress
▹ Needs Review
▹ Completed

Online Tools:

▹ Workflowy
￭ workflowy.com

▹ Trello
￭ trello.com

▹ Asana
￭ asana.com

Self-hosted Tools:

▹ Taigo.io
￭ Taiga.io

▹ Collabtive
￭ collabtive.o-dyn.de

Workflowy:

A good old online checklist. This
simple tool supports:
▹ Assigning tasks to a team member
▹ Nested subtasks
▹ Hashtags for easier search

Trello:

One of the most popular online
kanban board. This simple tool
supports:
▹ Assigning tasks to a team member
▹ Custom lists
▹ Custom tags
▹ File and link attachments
▹ Deadline and calendar support

Asana:

Comparably more complex, Asana
supports multiple workflows:
▹ Regular checklist
▹ Filtered task list
▹ Kanban board
▹ Gnatt board for graphing
▹ Weekly summary report

Taigo.io:

A self-hosted task management
software not unlike Asana:
▹ Regular checklist
▹ Filtered task list
▹ Kanban board
▹ Gnatt board for graphing

Collabtive:

An (unfortunately not very active)
self-hosted task manager, using good
old checklist system. Supports:
▹ File Sharing
▹ Instant messaging
▹ Contact sharing

Version Control

Purpose

Version controls (also known as
source control management, or SCM)
is a commonly command line
client-&-server tool that retains a
history of how the project’s assets
have changed. Each tool have various
capabilities of merging files,
especially text and code.

More About Version
Control

Version controls are powerful, but
also a bit complex. They can:
▹ Reverse changes (including

modifications and deletion) in
files, folders, or the entire project
to a previous state.

▹ Detail who made what changes to
the project, and how.

More About Version
Control, cont.

▹ Bookmark specific points in
history, great for marking
releases.

▹ Provide sandboxes to experiment
with new features and
enhancements.

Wait, why not use
multiple folders?

▹ Can’t be synced with other users
▹ Uses a lot less storage space
▹ Provides extra features, like

branch and tags
▹ GUI programs provide a list of files

that actually changed

Terms:

▹ Repository
￭ The server; retains the history

of the project
▹ Client
￭ Your computer

▹ GUI
￭ Short for Graphical user

interface; a proper graphical
menu and application

Tools:

▹ Git
￭ git-scm.com

▹ Mercurial
￭ mercurial-scm.org

▹ Subversion
￭ subversion.apache.org

GUI Tools:

▹ TortoiseGit, TortoiseHg, &
TortoiseSVN
￭ tortoisegit.org
￭ tortoisehg.bitbucket.io
￭ tortoisesvn.net

▹ GitHub Desktop
￭ desktop.github.com

▹ Sourcetree
￭ sourcetreeapp.com

How client-server SCM
works (e.g. Subversion):

client repository

Commit: pushes changes from the client to the repository,
creating a new revision in the repository’s history.

client repository

Update: pulls the relevant history from the repository, and
applies it to the client. The client is then updated to the
latest revision.

How distributed SCM
works (e.g. Git, Mercurial):

Local
project

Local
repository

Commit: pushes changes from the local project to the local
repository, creating a new revision. Server is untouched.

Local
repository

Remote
repository

Push: pushes changes from the local repository to the
server, merging the two histories.

How distributed SCM
works (e.g. Git, Mercurial):

Local
project

Remote
repository

Pull: downloads the remote history onto the local
repository, merging their histories. Then it applies the
latests changes to the local project.

Local
repository

Client-Server SCM:

▹ Pros
￭ Easier to use
￭ Has a “lock” feature: always

keeps only one team member
editing a file

￭ Per-folder revision handling
▹ Cons
￭ Poor merge algorithms

Distributed SCM:

▹ Pros
￭ Much more efficient
￭ Per project revision
￭ Better merging, handling of

moved and renamed files
￭ Better branching, tags

▹ Cons
￭ Harder to use

All-in-One
Solutions

Online Tools:

▹ GitHub
￭ github.com

▹ BitBucket
￭ bitbucket.org

▹ Microsoft Teams
￭ products.office.com/en-us/mi

crosoft-teams/free

Self-hosted Tools:

▹ Redmine
￭ Redmine.org

▹ Phabricator
￭ phacility.com/phabricator

▹ Fossil
￭ fossil-scm.org

Other Tools to
Consider

Content Management
Systems:

A blog + extra features. Examples:
▹ Wordpress
￭ wordpress.org

▹ Drupal
￭ drupal.org

▹ ghost
￭ ghost.org

▹ Grav
￭ getgrav.org

Forums:

A threaded message board for fans to
interact with your team. Examples:
▹ bbPress
￭ bbpress.org

▹ FluxBB
￭ fluxbb.org

▹ phpBB
￭ phpbb.com

Continuous Integration:

A server that monitors if there are any
changes to a repository. If so,
compiles the project to a new
executable. Examples:
▹ Unity Cloud Build
￭ build.cloud.unity3d.com

▹ Jenkins
￭ jenkins.io

Automated Testing:

An app or scripting framework to
simulate the user interaction. Often
integrates with Continuous
Integration. Examples:
▹ Appium
￭ appium.io

▹ SikuliX
￭ ikulix.com

▹ Selenium

Resources:

▹ AlternativeTo
￭ alternativeto.net

▹ Awesome-Selfhosted
￭ github.com/Kickball/awesome

-selfhosted

“

Any Questions?

