
Download Starting Project
1. Open bit.ly/2LSKbw0 in a browser to download

“Crash-Course-Unity-2D-Assets.zip”

https://bit.ly/2LSKbw0

Crash Course Godot 3
Building 2D interactive art in Godot 3

Goal
● Create an interactive 2D environment
● A brief start in GD scripting

Starting a new project
Step 1: Click “New Project”

Starting a new project
Step 2: Type in a project name and an empty folder.
Note: “Project Path” must be empty. Consider using the “Create
folder” button to create a folder w/ same name as project name.

Making a game

Importing stuff
1. Open the new project’s folder
2. Copy the contents of

“Crash-Course-Unity-2D-Assets.zip” to this folder.
3. Switch to Godot.

Scene View
● Near the top of the screen, click on “2D” to toggle to

the 2D scene view.

Scene View
● Create a Position2D node in the

Scene pane.

● Save this scene!

Add a sprite to a new scene
1. Drag & Drop the landscape.png to the scene view.

Navigating the scene in 2D
● 3-button mouse:

○ Left-click to select objects
○ Click and hold on the scroll wheel to pan
○ Scroll wheel to zoom in and out

Add a sprite to a new scene
1. Move the landscape to the bottom-right, below the

origin axis.
2. Play the game (accept adding the scene as the first

scene to play).
3. Notice that, without a camera,

Godot defaults (0, 0) at the top-left of the screen.

Add 2D collision
1. In Scene Pane, add a StaticBody2D to the root

node.
2. On the StaticBody2D node, add a

CollisionPolygon2D.

Add 2D collision
1. While having the CollisionPolygon2D node is

highlighted, click on the Scene view to create a
polygon.

Add a player
1. Right-click the Position2D again, and create a new

child node, KinematicBody2D.
2. Right-click KinematicBody2D, then add

AnimatedSprite.
3. In properties, create a new SpriteFrames.
4. Click on SpriteFrames.

Add a player
1. Drag the platformChar_idle.png into the

bottom-pane, Animation Frames.

Add a player
1. Create a new animation, name it “walk.”
2. Drag and drop the 2 platformChar_walk#.png

sprites into the animation window to create a new
animation.

Add controls
1. Right-click the

KinematicBody2D, and create a
new CollisionShape2D.

2. In Properties, create a new
RectangleShape2D.

Add controls
1. Adjust the size of the box collider

with the inner 2 circle nodes.

Add controls
1. Select KinematicBody2D, and

create a new script,
“MovePlayer.gd”

extends KinematicBody2D

class member variables go here,
for example:
var a = 2
var b = "textvar"

func _ready():
Called when the node is added

to the scene for the first time.
Initialization here
pass

#func _process(delta):
Called every frame. Delta is
time since last frame.
Update game logic here.
pass

Check the Script!

GD Script Syntax
● Extending a class:

○ extends KinematicBody2D
● Declaring a variable:

○ var a = 2
○ var b = "textvar"
○ var vec = Vector2(0, 0)
○ var arr = [1, 2, 3]
○ var dict = {"key": "value", 2: 3}

● Declaring constants:
○ const INT_A = 2
○ const STRING_B = "textvar"

GD Script Syntax
● Defining a new function:

○ func custom_function():
○ pass

● Conditionals:
○ if true:
○ pass
○ elif true:
○ pass
○ else:
○ pass

GD Script Syntax
● While loop:

○ while(false):
○ pass

● For loop:
○ for i in range(20):
○ print(i)

● Return:
○ return false

● Enum:
○ enum Version {ALPHA, BETA = 10}
○ Version.ALPHA

GD Script Syntax
● Comments:

○ # This is a comment
● Inner class:

○ class Test:
○ var value = 1

● Override Methods:
○ # Init is the Constructor
○ func _init():
○ # Call base method
○ ._init()
○ # Create object of inner class, Test
○ var lv = Test.new()

Methods to Override
● _ready() is called when the game begins.

○ func _ready():
○ pass
○ Basically Unity equivalent of “Start().”

● _process(float) is called on each frame.
○ func _process(delta):
○ pass
○ Parameter “delta” is a fraction of a second (float).
○ Basically Unity equivalent of “Update().”

Methods to Override
● _physics_process(float) is called on each Physics step.

○ func _physics_process(delta):
○ pass
○ Parameter “delta” is a fraction of a second (float).
○ Basically Unity equivalent of “FixedUpdate().”

extends KinematicBody2D

export(float) var move_speed = 500
export(String) var left_input = "ui_left"
export(String) var right_input = "ui_right"
export(String) var up_input = "ui_up"
export(String) var down_input = "ui_down"

var input = Vector2(0, 0)

More code on the next slide!

Write a Script

func _physics_process(delta):
input.x = 0
if Input.is_action_pressed(left_input):

input.x -= move_speed
if Input.is_action_pressed(right_input):

input.x += move_speed
input.y = 0
if Input.is_action_pressed(up_input):

input.y -= move_speed
if Input.is_action_pressed(down_input):

input.y += move_speed
move_and_slide(input)

Write a Script

Adjusting Script Numbers
1. Play the game! Use arrow keys.
2. Close the game, and look at Properties.
3. Notice the following line makes variables exposed to

the Properties pane:
a. export(float) var move_speed = 500

Adjusting Input
1. In the menu bar, select

“Project -> Project Settings.”
2. Click the “Input Map” tab.
3. Observe entries “ui_up,”

“ui_down,” etc.

Following Camera
1. Right-click the KinematicBody2D, and create a new

Camera2D.
2. Make sure the “Current” checkbox is checked in the

Properties, or else the camera won’t work.
3. Play the game!

As an Aside
1. Hard to move KinematicBody2D?
2. Select AnimatedSprite2D.
3. In the Scene view, click the “toggle lock” button.
4. Do the same thing for CollisionShape2D.
5. This will make both nodes unselectable.

Update Animation
1. Select AnimatedSprite.
2. Create a script on the AnimatedSprite.

Update Animation
extends AnimatedSprite

export(String) var idle_anim = "default"
export(String) var walk_anim = "walk"
export(NodePath) var player_controller = ".."

func _process(delta):
var node = get_node(player_controller)
if (node.input.x != 0) || (node.input.y != 0):

play(walk_anim)
else:

play(idle_anim)

Update Animation
1. Note the following 2 lines:

a. export(NodePath) var player_controller = ".."
b. var node = get_node(player_controller)

2. get_node() retrieves the node (and the script attached
to it!) based on a string path.

3. export(NodePath) provides a unique property that are
assigned to nodes specifically.

4. Note that string is based on Unix
directory standard,
e.g. “..” = parent directory.

Update Animation
1. Play the game! Use arrow keys.
2. Did the animation change?

Adding Background
1. Right-click Position2D, and create a

ParallaxBackground node.
2. Right-click ParallaxBackground, and create a

ParallaxLayer node.
3. Update the properties, and change the scale.

Adding Background
1. While ParallaxLayer is still highlighted, drag & drop

background.png.
2. If “Add Sprite” dialog comes up, change

to a Sprite.
3. Play the game!

Add Rigidbodies
1. Right-click Position2D node, and create a Rigidbody2D.
2. Right-click the Rigidbody2D, and create a new Sprite.
3. In the properties, under “Texture,” select “New

AtlasTexture.”
4. Click this property.

Add Rigidbodies
1. Drag the physicsProps.png in the Atlas property.

Add Rigidbodies
1. Click “Texture Region” at the bottom of the editor.
2. Click, hold, and drag over the circle to select its region.

Add Rigidbodies
1. Right-click the Rigidbody2D, and create a new

CollisionSprite2D.
2. Assign a circle shape, and have it encompass the

sprite.
3. Play the game!

Collision Detection Support?
1. Same as 3D; select Node pane, and assign a signal to

a script!
2. This will create a function.

Collision Detection Support?
1. Instancing a scene:

a. var scene = load("res://scenes/MyScene.tscn")
b. var scene_instance = scene.instance()
c. scene_instance.set_name("scene")
d. add_child(scene_instance)

