
Reviewing the
Basics
From Programming Basics Part 1 & 2

Comments
Comments are
human-readable notes
the computer
completely ignores.

// This is a comment
/* This is also a
comment */

Variables
Stores and recalls
information.

They’re created by
declaration.

/* Declaring different
types of variables */
bool varBool = true;
int varInt = 1;
float varFloat = 0.1f;
double varDouble = 0.2;
string varWord = “yay”;

Operations
Math-like formulas
that changes the
value of a variable.

int varInt = 1;
varInt = varInt + 3;
// varInt == 4

bool varBool = true;
varBool = varBool && \
false;
// varBool == false

Conditionals
A filter that checks
if a boolean is true
before running its
content.

int varInt = 1;
if(varInt < 1) {

Debug.Log(“Less”);
} else if(varInt == 1) {

Debug.Log(“Equal”);
} else {

Debug.Log(“Greater”);
}

A list that has a
fixed size. Said list
can hold any
single type of
variables.

float[] varArray = new float[3];
varArray[0] = 1f;
varArray[1] = 1.5f;
varArray[2] = 1.75f;
Debug.Log(varArray.Length);
Debug.Log(varArray[0]);
Debug.Log(varArray[1]);
Debug.Log(varArray[2]);

Arrays

Basically an array
that can change
size.

List<bool> varList = \
new List<bool>();

varList.Add(true);
varList[0] = false;
varList.Add(true);
Debug.Log(varList.Count);
Debug.Log(varList[0]);
Debug.Log(varList[1]);

List

A list-like container
where a unique
“word” in the
dictionary (called
keys) leads to a
specific definition
(called value).

Dictionary<string, int> varDict=\
new Dictionary<string, int>();

varDict.Add(“zero”, 1);
varDict[“zero”] = 0;
varDict.Add(“one”, 1);
Debug.Log(varDict.Count);
Debug.Log(varDict[“zero”]);
Debug.Log(varDict[“one”]);

Dictionary

Runs a list of lines
over and over until
a specified
boolean turns
false.

int[] arr = new int[] {1, 2, 3};
int index = 0;
while(index < arr.length) {

Debug.Log(arr[index]);
index = index + 1;

}

While Loops

A while loop that lets
you define what to
run before the loop,
the conditional to
continue the loop,
and last line to run
each loop.

int[] arr = new int[] {1, 2, 3};
for(int index = 0; \

index < arr.length; \
index = index + 1) {

Debug.Log(arr[index]);
}

For Loops

A loop that iterates
through every content
in an array, list,
dictionary, etc.

int[] arr = new int[] {1, 2, 3};
foreach(int element in arr) {

Debug.Log(element);
}

Foreach Loops

Functions
A list of lines.
Useful for
organization, and
repeating the same
set of operations
quickly with less
lines.

int CheckWord(string word) {
int varInt = 0;
if(word != “zero”) {

varInt = \
Random.Range(1, 100);

}
return varInt;

}
Debug.Log(CheckWord(“zero”));

Intermediate
Programming
Part #1

Focus
Recall that function is a
method for organizing
code (mainly operations,
conditionals, and loops).
It makes it easier to
re-use the same lines of
code repeatedly, and in
an easy-to-read fashion.

int CheckWord(string word) {
int varInt = 0;
if(word != “zero”) {

varInt = \
Random.Range(1, 100);

}
return varInt;

}
Debug.Log(CheckWord(“zero”));

Focus
We’ll be talking about 2 more methods of
organizing codes: structs and classes.

Note: we will only briefly go over scripting for
Unity specifically, but most topics will focus on
concepts of object-oriented programming.

Structs
Short for “structure”

About Structs
Structs are custom variable types that defines a list of
variables and functions instances of it will contain.
Like functions, they’re useful for organizing code.
Examples of built-in Unity structs:
● Vector3
● Quaternion

About Structs
Quick note: struct is a C# feature. Most languages do
not have structs. One exception, C++, technically has
a feature named struct, but acts differently from C#’s.

We’ll go over structs first because they’re simpler than
classes, and serve a similar purpose.

Let’s Make a New Script!
Create a script, “TestStruct.cs,” and add the code in
the next slide right below the line:
public class TestStruct : MonoBehavior {

Let’s Make a New Script!
public struct Planet {

public string name;
public float acceleration;

public float GravitationalForce(float mass) {
return mass * acceleration;

}
}

Taking it apart
public struct Planet {
Declaration of a struct named Planet (we’ll go over
what public means later).

public string name;
public float acceleration;
Declaration of 2 member variables: name and
acceleration.

Member Variable
Definition:
Variables declared within a struct or class. They’re
commonly used to either organize a bunch of variables
into a single group, and/or to provide data to methods
that rely on them.

Taking it apart
public float GravitationalForce(float mass) {
Declaration of a method named
GravitationalForce(float).

return mass * acceleration;
The lines of code GravitationalForce(float)
actually runs every time you call it.

Methods
Definition:
Functions declared within a struct or class that uses
member variables for its lines of operations.

Note: most programmers tend to use the word
“methods” and “functions” interchangeably, although
pedantically-speaking, there is a difference.

Methods
Notice that the method
GravitationalForce(float) uses the member
variable, acceleration:
return mass * acceleration;

When called, GravitationalForce(float) will
use whatever the value acceleration happens to
be set to.

Taking it apart
Basically, we created a new type of value named
“Planet,” and let the code know that it contains 2
member variables and a method.

How to Use This Struct
To use this new type of variable, we need to use the
new keyword similar to how we create lists and
dictionaries.

How to Use This Struct
Under “TestStruct.cs,” add the code in the next slide
right below the line:
void Start() {

How to Use This Struct
Planet earth = new Planet();
earth.name = “Earth”;
earth.acceleration = 9.81f;

Debug.Log(“I experience on “ + earth.name + \
“ “ + earth.GravitationalForce(150f) + \
“ Newtons of force!”);

Taking it apart
Planet earth = new Planet();
Creates a new instance of Planet named earth.

earth.name = “Earth”;
earth.acceleration = 9.81f;
Modify the data held in member variable name and
acceleration to “Earth” and 9.81 respectively.

Taking it apart
Debug.Log(“I experience on “ + earth.name + \

“ “ + earth.GravitationalForce(150f) + \
“ Newtons of force!”);

earth.name grabs the string data the member variable is
storing, while earth.GravitationalForce calls the
method and returns a float. All the strings and floats are
concatenated together with the + operation, so that
Debug.Log can print something in the console.

In summary
Using structs follows 3 simple steps:
1. Define the struct and its content:

a. name of the struct,
b. what member variable it contains, and
c. What methods it contains.

2. Create a new instance of the struct with new.
3. Access and/or modify the struct’s member variables and

function.

In summary
Note that to access a struct variable’s member variables
and methods, just add a period after the name of the
variable.
Most IDE’s (like Visual Studio) will provide a list of
auto-correct options, which includes a list of member
variables and methods contained within the struct. Handy!

Exceptions
Structs cannot be defined within a function or
method:
void Start() {

struct ThisWillNotWork { … }
}
This is similar to how functions cannot be defined within a
function.

Best Practices
Most of the time, you’ll want to define structs in their own
file. So instead of a file looking like this:
public class TestStruct : MonoBehavior {

public struct Planet { … }
}

You have this:
public struct Planet {

…
}

Best Practices
Why put it into a separate file? The struct will still be
accessible in other scripts in the same project, so
separating struct definitions into their own files helps
organization.

Besides, like variables, if a struct is defined within a {},
then it exists only within the {}.

Good Practice
public struct Planet {

…
}
public class TestPlanet : MonoBehavior {

void Start() {
Planet earth = new Planet();

}
}

Not-Great Practice
public class TestStruct : MonoBehavior {

public struct Planet { … }
// Planet is now embedded in TestStruct

}
public class TestPlanet : MonoBehavior {

void Start() {
// Now we need to write TestStruct. to access Planet
TestStruct.Planet earth = new TestStruct.Planet();

}
}

Oh, wait...
We haven’t explained what “public” does!

Access Modifiers
public & private

About Access Modifiers
Access modifiers define where a variable, method,
struct, or classes can be accessed. C# has 5
access modifiers; in order of permissiveness:
1. private
2. protected (will cover in Part #2)
3. internal (will cover in Advanced Programming)
4. protected internal (Advanced Programming)
5. public

Using Access Modifiers
The access modifier of a variable, method,
function, property, constructor, struct, or class
is defined by the word preceding the type.
● public string name;
● private string name;

Public
public makes any variable, method, etc.
accessible everywhere.

Public
public struct Permission {

public string name; // “name” is public
}
public class TestPermission : MonoBehavior {

void Start() {
Permission test = new Permission();
test.name = “Yay!”; // Therefore, it’s accessible

}
}

Private
private makes any variable, method, etc.
accessible only within the {} they were defined
in.
Note: as a reminder, {} restricts the scope of
variables, methods, etc. Variables in particular
“stop existing” once past the trailing }.

Private
public struct Permission {

private string tag; // “tag” is private
public void PrintTag() {

/* Since this method is embedded within the {} “tag” is
defined in, it’s accessible here. But... */

Debug.Log(tag);
}

}
…

Private
…
public class TestPermission : MonoBehavior {

void Start() {
Permission test = new Permission();

/* This code is *not* embedded within the {} “tag” was
defined in, so the following line will give an error */

test.tag = “Yay!”;
}

}

Default Access modifiers
If you don’t define an access modifier, C# will
apply the following defaults:
● For variables, methods, functions,

properties, and constructors, e.g. “string
name;”, will default to private.

● For structs and classes, e.g. “struct
Planet {”, is...complicated...

Exceptions
Access modifiers cannot be specified in
variables declared within a function or method.
void Start() {

public string x = “This will not work!”;
}

Good Practices
● While C#’s default access modifiers are

really good, it’s still recommended to define
access modifiers for readability.

● Variables should always be private unless
they’re programmed to never change.

● Need to access a variable? Create a public
method, function, or property instead!

Good Practices
● Likewise, structs and classes should almost

always be public, unless they’re embedded
within another struct or class.

● If it’s the latter, well, opinions vary: play it by
ear.

● Opinions also vary on methods, functions,
and properties: play it by ear.

Good Practices
● For making variables accessible in the Unity

inspector, declare a variable as private,
and use the [SerializeField] attribute.

Consider...
We have this struct, Bank, that keeps tracks of
transactions:
public struct Bank {

/** Total balance in the bank **/
public int balance;

}
Bank teaBank = new Bank();
teaBank.balance = teaBank.balance + 20;
…

Consider...
But some sort of error occurs, and the balance
is all wrong!

How do we keep track of what’s going on with
the bank transactions?

Method #1
Add Debug.Log() on every line transactions
are happening:
Bank teaBank = new Bank();
teaBank.balance = teaBank.balance + 20;
Debug.Log(“Current balance: “ + teaBank.balance);
…
// This is tedious. Is there a better way?
…

Properties
Getters & setters

Let’s Fix struct Planet
public struct Planet {

public string name;
public float acceleration;

public float GravitationalForce(float mass) {
return mass * acceleration;

}
}

Let’s Fix struct Planet
public struct Planet {

// Changing these to private
private string _name;
private float _acceleration;

public float GravitationalForce(float mass) {
return mass * acceleration;

}
}

Let’s Fix struct Planet
// Add after } following GravitationalForce():
public string name {

get {
return _name;

}
set {

_name = value;
}

}

Let’s Fix struct Planet
// Add after } following name {:
public float acceleration {

get {
return _acceleration;

}
set {

_acceleration = value;
}

}

What Are Properties?
A C#-exclusive feature that allows one to
create 2 methods, a “Getter” and “Setter,” that
syntax-wise acts like variables.

Taking it apart
Every property starts by declaring at least the
type of the property, as well as its name before
the {. Optionally, an access modifier is
prepended as the first word as well.
public string name {

The line above indicates the property “name” is
a type string that’s publicly accessible.

Taking it apart
Within a property’s {}, either a get, set, or
both needs to be defined.
get {

The line above indicates that property “name”
has a getter.

Taking it apart
A get must return a type of variable the
property is defined as.

get {
return _name;

Since property “name” is declared as a
string, it returns a string variable, “_name”.

Taking it apart
If a set is defined, a new variable, “value” is
created that one can use to modify its data.

set {
_name = value;

Since property “name” is declared as a
string, the variable “value” is a string as
well. It’s used to modify the variable, “_name”.

Using Properties
Using properties is like using variables:
Planet earth = new Planet();
earth.name = “Earth”;

The second line above calls name’s set
property, by changing the variable value to
“Earth” and setting it to member variable,
_name.

Using Properties
Debug.Log(“I experience on “ + earth.name + \

The line above calls name’s get property,
which in turn returns the value contained in the
_name member variable.

Quick Note
Behind the scenes, what C# is actually doing is
creating a few methods:
public string get_name() and
public void set_name(string value)
Any references to the name property gets
immediately replaced by these methods.

Quick Note
Also remember that a property can be defined
with a get-only or a set-only: it’ll make the
property read-only or write-only respectively.

Quick Shortcut
Lastly, properties have a shortcut that doesn’t
require defining a member variable:
public string name {

get;
set;

}

Constructors
Defining initial member variables

What Are Constructors?
A type of method where it gives the
programmer an ability to define the initial
values of a struct’s member variable before it’s
created.
Almost all programming languages support
constructors (and often require them, actually).

What Are Constructors?
Constructors can shorten these 3 lines:
Planet earth = new Planet();
earth.name = “Earth”;
earth.acceleration = 9.81f;

To just this 1 line:
Planet earth = new Planet(“Earth”, 9.81f);

Adding a Constructor
public struct Planet {

private string _name;
private float _acceleration;

public Planet(string newName, float newAcc) {
_name = newName;
_acceleration = newAcc;

}

Taking it Apart
public Planet(string newName, float newAcc) {
A constructor is always declared with the same name
as the struct itself, and optionally starts with an access
modifier. Unlike a method, the type is not defined (it’ll
always return a Planet, anyway). The constructor
above defines also requires 2 arguments: string
newName and float newAcc.

Taking it Apart
_name = newName;
_acceleration = newAcc;
The content of the constructor is setting the member
variables to the arguments the user provided.

Important!
If a constructor for a struct is defined, all member
variables must be assigned an initial value.
public struct Whoops {

private string huh;
public Whoops(int nothing) {

/* since huh is not initialized, there’s
an error with this constructor */

}

Important!
That said, the initial value does not have to come from
an argument.
public struct Whoops {

private string huh;
public Whoops(int nothing) {

huh = “huh? “; // Completely valid!
huh = huh + nothing.ToString(); // Valid!

}

Important!
Lastly structs cannot define constructors with no
arguments.
public struct Whoops {

private string huh;
// No constructors without arguments allowed!
public Whoops() {

huh = “huh?”;
}

Why Is This Useful For Structs?
Arguably, constructors helps organize code by
making initialization code shorter. It also can
be used to reduce errors by making the user
explicitly define the starting values of a struct.
But there’s also one more benefit...

Readonly
Making a member variable permanent

What Is Readonly?
Readonly member variables are variables that can only
be assigned in a constructor exactly once. After that,
their values cannot change!

public struct Planet {
…
public readonly int id;
…

Using Readonly
Remember that all constructors must define readonly
variables once.
public struct Planet {

…
public Planet(int newId, string newName, \

float newAcce) {
id = newId;
…

Using Readonly
After that, just use the variable like any other.
Remember its value can’t be changed, though.
Planet earth = new Planet(3, “Earth”, 9.81f);
// The following line would give an error,
// because variable id is readonly
earth.id = 5;

A Constructor Shortcut
You could define 2 constructors to make providing an
id value optional...
public struct Planet {

public Planet(int newId, string newName, \
float newAcce) {

…
public Planet(string newName, float newAcce) {

id = 0;
…

A Constructor Shortcut
...or just use this() to use other defined constructors
to shorten code:
public struct Planet {

public Planet(int newId, string newName, \
float newAcce) {

…
public Planet(string newName, float newAcce) : \

this(0, newName, newAcce) {
}

A Constructor Shortcut
public Planet(string newName, float newAcce) : \

this(0, newName, newAcce) {

The 2-argument constructor above uses this(int,
string, float) to call the 3-argument constructor:
public Planet(int newId, string newName, \

float newAcce) {
id = newId;
…

Object-Oriented
Programming
A brief introduction

Objects
Recall structs and classes are only definitions.
They don’t actually contain usable data.

Instances of classes and structs are called
Objects. They do contain data.

For Example
public struct Planet {
Planet is just a struct.

Planet earth = new Planet(3, “Earth”, 9.81f);

earth is an object of type Planet.

Why Object-Oriented?
Object-oriented programming languages (C#,
Java, C++, Ruby, Python, etc.) allows one
group a couple of variables and functions into a
type, as demonstrated by structs. But there’s
more! By upgrading from structs to classes,
one can unlock more fancy features, like
pointers, inheritance, and polymorphism.

Classes
How to upgrade from struct to classes

Upgrading To Class
public struct Planet {

private string _name;
private float _acceleration;
public readonly int id;
…

Upgrading To Class
public class Planet {

private string _name;
private float _acceleration;
public readonly int id;
…

Why Use Classes?
Tune in for Part #2!

