
Previously, on
Lesson Night...
From Intermediate Programming, Part 1

Struct
A way to define a new
variable type. Structs
contains a list of
member variables and
functions, referenced by
their name.

public struct NewType
{
 public int variable;
 public void func()
 {
 // do something!
 }
}

Struct
One uses a
struct by
creating a
variable using
the “new”
keyword

NewType type = new NewType();
type.variable = 1;
type.func();

Access Modifier
Changes the
accessibility of
variables,
functions, structs
and classes in
other scripts.

public struct A {
 public int a;
}
void Start() {
 A test = new A();
 // No errors below.
 test.a = 20;
 Debug.Log(test.a);
}

Access Modifier
Changes the
accessibility of
variables,
functions, structs
and classes in
other scripts.

public struct A {
 private int a;
}
void Start() {
 A test = new A();
 // Errors below!
 test.a = 20;
 Debug.Log(test.a);
}

Constructors
A customized
method of creating
a new struct or
class.

public struct A {
 public int a;
 public A(int newA) {
 a = newA;
 }
}
void Start() {
 A test = new A(20);
 Debug.Log(test.a);
}

Forces a member
variable to be changed
only in the constructor.

public struct A {
 public readonly int a;
 public A(int newA) {
 a = newA;
 }
}
void Start() {
 A test = new A(20);
 // Error below!
 Test.a = 10;
}

Read-only

A method that
“looks” like a
member variable.
Allows one to
change (set) or
retrieve (get) a
value.

public struct Duration {
 public int seconds;
 public int minutes {
 get { return seconds / 60; }
 set { seconds = value * 60; }
 }
}
Duration d = new Duration();
d.minutes = 2;
Debug.Log(d.seconds);

Properties

Intermediate
Programming
Part #2

Remember...
Starting with functions, and leading into structs,
all of these “new features” we’re teaching about
simply organizes variables and operators into
easier-to-read and easy-to-reuse code.

Remember...
Also, you can literally
upgrade from struct to
class by just...replacing

 with .

public struct A {
 public int a;
 public A(int newA) {
 a = newA;
 }
 public void Print() {
 Debug.Log(a);
 }
}

Remember...
Also, you can literally
upgrade from struct to
class by just...replacing

 with .

public class A {
 public int a;
 public A(int newA) {
 a = newA;
 }
 public void Print() {
 Debug.Log(a);
 }
}

Class
Where the fun begins!

Classes
Classes are a drastic upgrade from structs. They
support a ton of features including:
● Inheritance
● Polymorphism
● Abstraction
● Etc.
But that’s a lot of jargon, so let’s see examples.

Inheritance
Reusing previously-made classes

Let’s Make a New Script!
Create a script,
“Feline.cs,” and
add some
member
variables:

public class Feline : MonoBehaviour
{
 [SerializeField]
 public string publicVar;
 [SerializeField]
 protected string protectedVar;
 [SerializeField]
 private string privateVar;
}

Test the Script
Create a new
GameObject,
then attach the
script on it.

Let’s Make a New Script!
Create yet
another script,
“Cat.cs,” and
write in:

public class Cat : Feline {
}

Test the Script
Create a new
GameObject,
then attach the
Cat script on it.

The Abstract
In evolution, the children of a species inherits the traits
their parents has, e.g. long necks for giraffes, long
trunks for elephants, etc.

The Abstract
Similar, classes can inherit member variables,
properties, and functions from other classes by using
“extension.” For C#, the syntax to extend a class from
another is to add a colon after the name of the child
class, then type the name of the parent class.
Exceptions: or classes cannot be
inherited. Since they’re advanced material, though,
they won’t be covered this lecture.

Good Practice
Child classes are commonly created to add extra
definition from the parent class. For example:
● Cat and Tiger class extends from Feline class
● Feline and Canine class extends Mammals class
● Mammals and Reptiles class extends Animals class

Note: classes can only inherit from one class.

Access Modifiers
Any non-
member variables,
methods, and
properties from the
parent class can be
accessed in the
child class as well.

public class Cat : Feline {
 void Start() {
 // No Error
 Debug.Log(publicVar);
 // No Error
 Debug.Log(protectedVar);
 // Error!
 Debug.Log(privateVar);
 }
}

Access Modifiers
That said, the access modifier is a little
special! We’ll go over why later.

Type Casting
Understanding types

Let’s Make a New Script!
Create a script,
“Call.cs,” and add
some member
variables:

public class Call : MonoBehaviour {
 [SerializeField]
 private Feline feline;
}

Test the Script
Create a new
GameObject,
then attach the
script on it.

Test the Script
Try dragging the GameObject with the script
in the hierarchy window to variable under
the inspector.

Note: this should not work. is not defined as
a type of .

Test the Script
Try dragging the GameObject with the
script in the hierarchy window to ’s
variable under the inspector.

Note: this should work.
 is defined as,

well, .

Test the Script
Try dragging the GameObject with the script
in the hierarchy window to ’s variable
under the inspector.

Note: this also works.
Which means is also
a !

What’s Going On?
Since inherits
from , they
share a lot of
similarities. Thus,
C# can treat
instances of s
like a
variable.

public class Call : MonoBehaviour {
[SerializeField]
private Feline feline;

void Start() {
Feline pet = new Feline();
Feline cat = new Cat();

}
}

Casting Up
In short, instances of child classes (e.g.) can
automatically be casted up into a parent class type
(e.g.).

Casting Down
Let’s say had
extra information
than Feline.

public class Cat : Feline {
public void MakeSound() {

Debug.Log(“Meow!”);
}

}

Casting Down
But only has a

 type...and
 doesn’t

have what has.
How do you fix this?

public class Call : MonoBehaviour {
[SerializeField]
private Feline feline;

void Start() {
// Felines can’t make sounds
feline.MakeSound();

}
}

Casting Down
Parent types can be
casted down to
children classes by
using parentheses
with the name of the
child class, e.g.

public class Call : MonoBehaviour {
[SerializeField]
private Feline feline;
void Start() {

// Cast feline up to a cat
Cat pet = (Cat)feline;
pet.MakeSound();

}
}

Casting
Note that if a variable isn’t actually the type being
casted to, it will give a runtime error. For example, in
the Unity editor, drag the GameObject with the

 script into ’s variable. Since
feline is now a type, casting would fail.

Protected
Access Modifier

Protected
The script
cannot access
protected variables
of ,
regardless of
whether it’s been
casted to or not.

public class Call : MonoBehaviour {
[SerializeField]
private Feline feline;
void Start() {

// Both line gives errors
Debug.Log(feline.protectedVar);
Debug.Log(((Cat)feline).\

protectedVar);
}

}

Protected
So in short, makes member variables,
methods, properties, classes, and structs accessible to
itself and any of its children below its hierarchy. It
remains inaccessible, however, to any other script.

Polymorphism
Onto methods!

Methods in Hierarchy
Let’s add the

method (already in

) into .
This will cause a
warning to appear.

public class Feline : MonoBehaviour {
//...
public void MakeSound() {

Debug.Log(“Grr...”);
}

}

Methods in Hierarchy
Next, let’s call

 in
the script.

public class Call : MonoBehaviour {
//...
void Start() {

feline.MakeSound();
}

}

Test the Script
Drag the script in the hierarchy window to

’s variable under the inspector, then
run the game, and take a look at the output.

What do you think will
happen? Will the console
say “Meow!” or “Grr…”?

Test the Script
Drag the script in the hierarchy window to

’s variable under the inspector, then
run the game, and take a look at the output.

What do you think will
happen? Will the console
say “Meow!” or “Grr…”?

Methods in Hierarchy
In C# and C++, by default, when scripts in a hierarchy
share methods with the same name, the other code
that calls that method will use the variable type’s
method. In the example before, even if the variable

 may actually be a , it will still call
’s method because

’s type is (same story for
properties).

Methods in Hierarchy
However, it is possible to make to call
the child class’ method! This is called polymorphism,
and requires the parent class to provide permission to
its children that they can override a method’s
functionality.
Note: by default, all methods in Java can be
overridden, and thus, there’s no need to grant
permission in that language.

Polymorphism In Action
Add to

 in
. The same

warning will still
appear.

public class Feline : MonoBehaviour {
//...
public virtual void MakeSound() {

Debug.Log(“Grr...”);
}

}

Polymorphism In Action
Also add

 to
 in

. The warning
should disappear.

public class Cat : Feline {
//...
public override void MakeSound() {

Debug.Log(“Meow!”);
}

}

Test the Script
Drag the script in the hierarchy window to

’s variable under the inspector, then
run the game, and take a look at the output.

What do you think will
happen? Will the console
say “Meow!” or “Grr…”?

Test the Script
Drag the script in the hierarchy window to

’s variable under the inspector, then
run the game, and take a look at the output.

What do you think will
happen? Will the console
say “Meow!” or “Grr…”?

Polymorphism In Action
Since overrode ’s ,

 used ’s method instead!

Remember that in C# and C++, if you want to override
a method or property, the parent must declare that
method or property as virtual, giving its children
permission to override it.

Why Use Polymorphism?
Polymorphism improves
code reusability by
allowing child classes to
change the behavior of
their instance.
For example, let’s say
there’s a class named

:

public class Shape3D {
public virtual float Volume {

get {
// Returns 0 by default
return 0;

}
}
public float Mass { get; set; }
// More code on the next slide...

Why Use Polymorphism?
Polymorphism improves
code reusability by
allowing child classes to
change the behavior of
their instance.
For example, let’s say
there’s a class named

:

// Continued from the last slide
public float Density {

get {
if(Volume > 0) {

return Mass / Volume;
} else {

return 0;
}

}
}

}

Why Use Polymorphism?
If a class extends

 and overrides
, the property

 will be updates
to use the new
property as well!

public class Box : Shape3D {
public float Length { get; set; }
public float Height { get; set; }
public float Width { get; set; }
public override float Volume {

get {
return Length * Height * \

Width;
}

}
}

Why Use Polymorphism?
If a class extends

 and overrides
, the property

 will be updates
to use the new
property as well!

using UnityEngine;
public class Sphere : Shape3D {

public float Radius { get; set; }
public override float Volume {

get {
return (4f / 3f) * \

Mathf.PI * \
Mathf.Pow(Radius, 3);

}
}

}

Good Practice
Declaring that a method is does take up
resources. As such, really ask the question, “do I want
to let child classes override this method/property”
before making it .
Likewise, only a method in a child class if
it’s clearly needed. Make sure the method still acts
within the expectations the parent has set.

More About Polymorphism
An overridden method can
be overridden again by a
child class.

public class B : A {
public override void Y() {

// Do something
}

}
public class C : B {

public override void Y() {
// Do something else

}
}

More About Polymorphism
If you want to call a method
from the parent class, use
the keyword .
acts like an instance of the
parent class.
Note: in Java and C++, the
equivalent keyword of C#’s

 is .

public class SumList : \
List<int> {

int sum = 0;
public void SumList() : \

base() { }
public override void \

Add(int i) {
base.Add(i);
Sum = sum + i;

}
}

Pointers
How instances of classes behave

Back To Structs
At this point, you might be asking, “why use structs
over classes?” In short, instances of structs are
values, and instances of classes are pointers. Structs
would help prevent unexpected changes on variables
that are designed to change frequently.

...what does that mean? Let’s do an experiment!

Let’s Create a New Script!
Create a script,

. Let’s
test what happens if an

 copies its value to
another variable, then
we change the value of
the new variable.

public class TestVars : MonoBehaviour {
void Start() {

int i1 = 1;
int i2 = i1;
Debug.Log(“i1: ” + i1);
Debug.Log(“i2: ” + i2);
i2 = 2;
Debug.Log(“i1: ” + i1);
Debug.Log(“i2: ” + i2);

}
}

Test The Script
Attach the script to a GameObject, then run the game.
What happened? Is it what you expected?

Testing Structs
Let’s test what
happens if a
copies its value to
another variable, then
we change the value of
the new variable.

public class TestVars : MonoBehaviour {
struct S {

public int i;
public S(int newI) {

i = newI;
}

}
void Start() {

S s1 = new S(1);
S s2 = s1;
// Continued to the next slide

Testing Structs
Let’s test what
happens if a
copies its value to
another variable, then
we change the value of
the new variable.

// From the last slide
Debug.Log(“s1: ” + s1.i);
Debug.Log(“s2: ” + s2.i);
s2.i = 2;
Debug.Log(“s1: ” + s1.i);
Debug.Log(“s2: ” + s2.i);

}
}

Test The Script
Run the game. What happened? Is it what you
expected?

Testing Classes
Let’s test what
happens if a
copies its value to
another variable, then
we change the value of
the new variable.

public class TestVars : MonoBehaviour {
class C {

public int i;
public C(int newI) {

i = newI;
}

}
void Start() {

C c1 = new C(1);
C c2 = c1;
// Continued to the next slide

Testing Classes
Let’s test what
happens if a
copies its value to
another variable, then
we change the value of
the new variable.

// From the last slide
Debug.Log(“c1: ” + c1.i);
Debug.Log(“c2: ” + c2.i);
c2.i = 2;
Debug.Log(“c1: ” + c1.i);
Debug.Log(“c2: ” + c2.i);

}
}

Test The Script
Run the game. What happened? Is it what you
expected?

About Pointers
Pointers are digital-equivalent of a physical mail
address. A mailing address is useful for finding a
house; once there, one can either store or take out
content from that shelter. If your friend copies that
address, however, they only copied the number and
street name of that address. You both now hold
references to the same house.

About Pointers
C# and Java both “hides” that
instances of classes (called objects)
are pointers. In reality, objects only
stores addresses of the memory
location (the “house”) that variables’
data is stored.
C++ is more explicit:

class C {
public int i;
public C(int newI) {

i = newI;
}

}
C *c1 = new C(1);
C *c2 = c1;
Debug.Log((*c1).i);
Debug.Log(c2->i);

Looking Back
When the line with was used, it
allocated a new memory space to
store ’s content. When was set
to , however, only the address to

’s content was copied. Both
and holds the address to the same
object!

// New object
C c1 = new C(1);

// Copy address
C c2 = c1;

Benefits of Pointers
Pointers allows multiple entities to change an object’s
member variables at the same time, kind of like Google
Docs. They also tend to save memory by encouraging
programmers to reuse the same memory location
multiple times.

Benefits of Pointers
Functions, properties, and
methods can edit objects
internally if they’re passed in as
an argument. In fact, they’re the
only argument that can be edited
this way: all other types of
arguments are duplicates of the
original.

void func1(int i) {
i = i + 1;

}
int i = 0;

// Prints “0”
Debug.Log(i);

// Also prints “0”
func1(i);
Debug.Log(i);

Benefits of Pointers
Functions, properties, and
methods can edit objects
internally if they’re passed in as
an argument. In fact, they’re the
only argument that can be edited
this way: all other types of
arguments are duplicates of the
original.

void func2(C c) {
c.i = c.i + 1;

}
C c = new C(0);

// Prints “0”
Debug.Log(c.i);

// Prints “1”
func2(c);
Debug.Log(c.i);

How to Duplicate Objects
To duplicate objects so that they
each hold their own content, the
class must define a method that
does so.
...No, seriously, that’s the only
way in C#, Java, and C++.

class C {
public int i;
public C(int newI) {

i = newI;
}
public C Clone() {

return new C(i);
}

}
C c1 = new C(1);
C c2 = c1.Clone();

Good Practice
Since it uses less memory in most use-cases, most of
the time, it’s preferable to using classes rather than
structs. If it’s clear that a type you’re defining will be
used as member variables for other classes, and that
member variable will change frequently, use structs
instead.
E.g. is a struct because

 is used very frequently.

Abstract Classes
Creating a non-initializable type

Looking Back
A while back, we gave

 as an example
of polymorphism.
Even though property

 is a useful
example for overrides,
the default behavior
(returns 0) is pointless.

public class Shape3D {
public virtual float Volume {

get {
// Returns 0 by default...which isn’t
// a useful behavior. Besides
// demonstrating virtual & override,
// why have this at all?

return 0;
}

}
// Ignoring the rest of the code...

Enter Abstract
If a parent class has a method or property that doesn’t
have a good default behavior, one can set that method
or property to be , indicating that:
1. The method or property has no behavior at all.
2. The child class must override the method or

property.

Improving
One can improve
by making property

 abstract. Abstract
methods/properties can
only be declared in an
abstract class, so

 is converted to
an abstract class as well.

public abstract class Shape3D {
public abstract float Volume {

// No more pointless default behaviors!
get;

}
}
public float Mass { get; set; }
public float Density {

get {
// Ignoring the rest of
// the code

Extending Abstract Classes
One extends an abstract
class just like any other class.
The only requirement is that
the abstract methods and
properties are overridden in
that child class. So the
previous example, can
remain the unchanged even if

 is now abstract.

public class Box : Shape3D {
public float Length { get; set; }
public float Height { get; set; }
public float Width { get; set; }
public override float Volume {

get {
return Length * Height * \

Width;
}

}
}

Abstract Methods
Abstract methods are defined with only the first line of
a normal method, quickly followed by a semicolon

Objects of Abstract Class
Since an
has methods and/or
properties with no definition,
they cannot be initialized
directly. One has to initialize
them with a child class
instead.

// This will give an error
Shape3D bad = new Shape3D();

// This won’t
Shape3D good = new Box();

Constructors
Ironically, es can define
constructors, and they even look like a normal classes’
constructor. Only child classes can use them in
practice, though, so they’re only useful for defining

 member variables.

Finally,
Child classes of es can also be

.

Good Practice
Use an if you want to force its
children to define specific methods and/or properties.

That’s It!
Stay tuned for Advanced Programming!

