
Programming
Basics
Part 2, completing the basics

Agenda
1. A few digressions
2. Homework answers
3. Loops: while & for
4. Arrays
5. Lists
6. Dictionaries
7. Loops: foreach
8. Creating your own functions
9. Unity Events

Var
Digression #1

About var
var is a C# 3.0+ feature and a replacement for
variable type declaration that automatically figures
out what a type of a variable should be. Note that:
1. var needs a ‘=’ to determine the variable type,
2. var simply replaces variable type. You can’t

change the type later like you can in Python,
Ruby, etc.

Example
bool isTrue = true;
int intNum = 1;
float floatNum = 2f;
string word = “Falcon Punch”;

Example
var isTrue = true;
var intNum = 1;
var floatNum = 2f;
var word = “Falcon Punch”;

Public Variables
in Unity
Digression #2

Any public variables declared within class
declaration, but outside functions will be shown in
the Unity inspector. This allows you to change the
value of that variable from Unity itself.

Naturally, this is a Unity-exclusive feature.

About public

Example
class HelloWorld : MonoBehaviour {

public bool isTrue = true;
public int intNum = 1;
public float floatNum = 2f;
public string word = “Za Waludo”;

void Start () { }
}

Example

Alternatively, you can use [SerializedField]
right above the variables declaration to make it
appear on the inspector. Most programmers will
prefer this over public.

Naturally, this is a Unity-exclusive feature.

[SerializedField]

Example
class HelloWorld : MonoBehaviour {

[SerializedField]
int intNum = 1;
[SerializedField]
string word = “Za Waludo”;

void Start () { }
}

Homework
Answers

Hypotenuse
Given float variables side1 and side2, make a
program that prints the hypotenuse of a right-triangle.

side2

side1

hypotenuse

Hypotenuse
float side1 = 1f;
float side2 = 2f;
float hypotenuse =
Mathf.Sqrt((side1 * side1) +\

 (side2 * side2));
Debug.Log(hypotenuse);

Integer’s state
Given int variables number, make a program that
prints either “Negative”, “Positive” or “Zero”
based on the whether the number is negative, positive,
or zero.

Integer’s state
int number = 1;
if(number > 0) {
 Debug.Log(“Positive”);
} else if(number < 0) {
 Debug.Log(“Negative”);
} else {
 Debug.Log(“Zero”);
}

Loops
While & for

What are loops
Loops are any process repeated over and over
again for a limited number of time.

For example, let’s say you want to count up
from 1 to 10.

while Loops
For example, let’s say you want to count up from 1 to
10.
int num = 1;
while(num <= 10) {

Debug.Log(num);
num = num + 1;

}

while Loops
while(num <= 10) {
1. Like if-conditionals, while-loops starts with the

word, “while,” followed by () containing a bool.
2. So long as the variable or operation between the ()

remains true, the content of the loop (that comes
right between {}) will run repeatedly.

while Review
int num = 1;
while(num <= 10) {

Debug.Log(num);
num = num + 1;

}

Run Debug.Log(num) and
increment num by 1 while
num is less than or equal to
10.

Loop shortcuts
Incrementing a number until they reach a
certain value is an incredibly common
programming task.

So there’s a shortcut called for!

for Loop
The same example, now as a for loop:
for(int num = 1; num <= 10; num = num + 1) {

Debug.Log(num);
}

for Loop
for(int num = 1; num <= 10; num = num + 1)
1. Like while-conditionals, for-loops starts with the

word, “for,” followed by ().
2. Unlike while, for loops require 2 more ; between ().

for Loop
for(int num = 1; num <= 10; num = num + 1)
1. The 1st segment (between (and ;) is run before

the loop starts.
2. The 2nd segment (between ; and ;) is a boolean

variable or operation that the loop checks before
running its content.

3. The 3rd segment (between ; and)) is an operation
run at the end of the loop.

for Loop

for([seg1];[seg2];\
[seg3]) {

[content]
}

[seg1]
while([seg2]) {

[content]
[seg3]

}

Essentially, for loop is just a shorter while loop:

int num = 1;
while(true) {

Debug.Log(num);
num = num + 1;
if(num > 10) {

break;
}

}

break in Loops

break in Loops
1. break; like return for functions, terminates a

loop.
2. Has to appear within a loop.
3. Works for while, for, and (introduced later)

foreach

Arrays
A new variable!

What are arrays?
Arrays are lists of variables with a fixed size.
int[] intArray = new int[] {3, 6};
Debug.Log(intArray[0]);
Debug.Log(intArray[1]);
Debug.Log(intArray.Length);

Declaring Arrays
Arrays uses a variable type, then [] to signify
the array’s content type:
bool[] boolArray;
int[] intArray;
float[] floatArray;
string[] stringArray;

Creating Arrays
There are two ways to create an array. The
easy way is to declare the size of the array:
bool[] boolArray = new bool[3];
In above example, new indicates a new array is
being created, bool indicates the content type,
and 3 indicates the length of the array.

Creating Arrays
The second way to create an array is by using
{}:
int[] intArray = new int[] {1,2,3};
In above example, there’s no number between
[] because the content of the array - under {}
and separated by , - is a already indicative of
the array’s length.

Accessing arrays
Array elements can be retrieved and changed
using [] and a number:
int[] intArray = new int[] {3, 6};
intArray[0] = 567;
Debug.Log(intArray[0]);
Debug.Log(intArray[1]);

Accessing arrays
intArray[0] = 567;
1. The int between [] is called index.
2. Arrays starts at index 0, meaning the last

index is the array’s length minus 1.

Array Length
Debug.Log(intArray.Length);
1. You can access the length of the array with

Length, which is a read-only int.

About string
string is a special array of characters (called char)
where you can’t change any of its elements:
string test = “Heh”;
for(int i = 0; i < test.Length; \

i = i + 1) {
char letter = test[i];
Debug.Log(letter);

}

One more thing...
Like strings, arrays can be null.
int[] intArray = null;

Lists
A better array!

What are Lists?
Lists are like arrays, but it’s size can change as
necessary. Note that they’re called Vectors in
C++, and ArrayLists in Java.
Before typing any code, though, you’ll need to
add this line at the top of the script file:
using System.Collections.Generic;

What are Lists?
Example of list use:
List<int> intList = new List<int>()
{12, 24};
Debug.Log(intList[0]);
Debug.Log(intList[1]);
Debug.Log(intList.Count);

Declaring Lists
Lists uses <>, then a variable type to indicate
its content type:
List<bool> boolList;
List<int> intList;
List<float> floatList;
List<string> stringList;

Creating Lists
Like arrays, there are 2 ways to make lists:
1. List<int> l1 = new List<int>();
2. List<int> l2 = new List<int>() \

{2, 7};
Unlike arrays, you cannot declare the initial size of a
list (not even new List<int>(5) works).

Add
You can add as many elements as you’d like with
Add():
List<string> list = new List<string>();
list.Add(“Hello”);
list.Add(“World”);
list.Add(“Again!”);

Accessing List
List elements can be retrieved and changed
just like arrays; using []:
List<int> list = new List<int>{3};
list[0] = 567;
Debug.Log(list[0]);

Remove
You can remove elements from a list using either RemoveAt(int index) or
Remove(element):
List<string> list = new List<string>() \
{“yes”, “no”, “maybe”};
// Removes the second element (“no”)
list.RemoveAt(1);
// Removes “maybe”
list.Remove(“maybe”);
Depending on how large the list is (e.g. 200+ elements), removal can be a slow
operation, so be careful when using it.

Contains
Unlike Arrays, you can also check to see if a specific value
has been added into a list:
List<int> list = new List<int>() {2, 7};
Debug.Log(list.Contains(2));
Debug.Log(list.Contains(7));
Depending on how large the list is (e.g. 200+ elements),
this can be a slow operation, so be careful when using it.

List Length
Debug.Log(intList.Count);
1. You can access the length of the list with

Count, which is a read-only int.
2. No, I have no idea why it’s not Length.

One more thing...
Lists can be null.
List<int> intList = null;

Dictionary
And now for something different

What are Dictionaries?
Dictionaries are like Lists where the index can be
customized to any variable type. This is often
referenced as key-to-value mapping. Note that
Dictionaries are called Maps in C++ and HashMaps in
Java.
Like Lists, you’ll need to add this line at the top of the
script file (if you haven’t already):
using System.Collections.Generic;

What are Dictionaries?
Example of dictionary use:
Dictionary<string, int> map = \

new Dictionary<string, int>() \
{{“life”, 100},
{“mana”, 25}};

Debug.Log(map[“life”]);
Debug.Log(map[“mana”]);
Debug.Log(map.Count);

What are Dictionaries?
new Dictionary<string, int>() \

{{“life”, 100}, {“mana”, 25}};
In the above example, string “life” and “mana” are keys that
maps to the values, 100 and 25 respectively. Much like List
and Array indexes, all keys in Dictionaries has to be
unique. The following changes would produce an error:
new Dictionary<string, int>() \

{{“life”, 100}, {“life”, 25}};

Declaring Dictionaries
Dictionaries uses <>, then two variable types
(divided by a ,) to indicate its content type:
Dictionary<bool, int> aMap;
Dictionary<string, float> bMap;
The first variable types are the keys, while the
second are the values.

Creating Dictionaries
Like lists, there are 2 ways to make dictionaries:
1. Dictionary<int, bool> d1 = new \

Dictionary<int, bool>();
2. Dictionary<int, bool> d2 = new \

Dictionary<int, bool>() {{1, true},
{2, true}, {5, false}, {-1, false}};

The last declaration requires pairs of values between
the inner-most {}.

Add
Elements in a dictionary are added in pairs using Add():
Dictionary<string, int> map = new \

Dictionary<string, int>();
map.Add(“Hello”, 1);
map.Add(“World”, 2);
Remember, keys are supposed to be unique! If two of the
same keys are added in, an error would occur.

Accessing Dictionaries
Values in Dictionaries elements can be retrieved and
changed by using [] with a key :
Dictionary<string, int> map = new \

Dictionary<string, int>() \
{{“power”, 8999}};

map[“power”] = 9999;
Debug.Log(map[“power”]);

Contains
Since dictionary values comes in pairs, you can check whether it contains a
certain key or value:
Dictionary<string, int> map = new \

Dictionary<string, int>();
map.Add(“Hello”, 1);
Debug.Log(map.ContainsKey(“Hello”));
Debug.Log(map.ContainsValue(1));
ContainsKey() is fast regardless of the dictionary size, and useful to make
sure you don’t add the same key twice. ContainsValue(), on the other
hand, can be very slow depending on dictionary size.

Remove
Elements are removed from dictionaries using keys as
reference:
Dictionary<string, int> map = new \

Dictionary<string, int>() \
{{“a”, 0},{“b”, 10}};

map.Remove(“a”);

Dictionary Length
Debug.Log(map.Count);
1. You can access how many pairs a dictionary

contains with Count, which is a read-only
int. This is exactly like Lists.

One more thing...
1. Dictionaries can be null.
Dictionary<int, int> intMap = null;
2. A key in a dictionary cannot be null. The following

will give an error
Dictionary<string, int> map = \
new Dictionary<string, int>();
map.Add(null, 1);

Loops, again
Foreach

The long-cut
Let’s say you wanted to check all the elements in an array,
chronological order, using a for loop:
int[] test = new int[] {3, 2, 1};
for(int i = 0; i < test.Length; i = i + 1){

Debug.Log(test[i]);
}

The shortcut
The same code, but in a foreach loop:
int[] test = new int[] {3, 2, 1};
foreach(int element in test){

Debug.Log(element);
}

Taking it apart
foreach(int element in test){
Unlike all the other loops foreach does not take a bool in-
between (). Instead, it asks for a variable name to set
while it goes through each element in an array. In the
above example: test is an int[], so the first two words
between () is the type (int) and variable name
(element). This part is immediately followed by “in”, then
the array itself.

Taking it apart
foreach(int element in test){

Debug.Log(element);
}
Thus, this loop reads: for each integer “element” in the
array, test, do Debug.Log(element).

Lists
foreach works on Lists, too:
List<int> test = new List<int>() {3, 2, 1};
foreach(int element in test) {

Debug.Log(element);
}

Dictionary
foreach works on Dictionaries, too, but a bit differently:
Dictionary<string, int> test = \

new Dictionary<string, int>() \
{{“love”, 3}, {“hate”, 2}, {“ambiguity”, 1}};

foreach(KeyValuePair<string, int> element in test) {
Debug.Log(element.Key + “: “ + element.Value);

}

Taking it apart
foreach(KeyValuePair<string, int> element in test) {

Recall that dictionary contains a key-to-value mapping.
Thus, foreach uses KeyValuePair<[type1],
[type2]> to represent each key-to-value pair as an
element (where type1 and type2 are the dictionary’s key-
type and value-type respectively). Since dictionaries aren’t
sorted (they can’t be: the key could be anything), the order
foreach traverses through the dictionary is unknown.

Taking it apart
Debug.Log(element.Key + “: “ + element.Value);

As a KeyValuePair<,>, the way to access the key and
value from element is simply Key and Value.

Functions
How to make your own

Functions
Remember this?

f(x) = x2

f(x , y) = x + y

Functions
Back in part #1, we said functions runs a series
of instructions, and optionally returns a value.
They’re great for repeating a set of instructions
quickly.

Example
Let’s turn our first homework into a function:
class HelloWorld : MonoBehaviour {

float Hypotenuse(float s1, float s2) {
float h = Mathf.Sqrt((s1 * s1) + (s2 * s2));
return h;

}

// ...continued on next slide

Example
You can use your own functions like any built-in functions:

// ...continued from previous slide
public float side1 = 1f;
public float side2 = 2f;

void Start() {
float h = Hypotenuse(side1, side2);
Debug.Log(h);

}
}

Taking it apart
Functions starts with a declaration:
float Hypotenuse(float s1, float s2) {
1. The first float indicates the type of variable this function will return.
2. Hypotenuse is a declaration of this function’s name. Functions can

have names like variables (starts with a letter, can contain numbers,
etc.)

3. float s1 conveys the first argument the function can take in.
Functions can take zero or more arguments, so long as a type and
unique variable names are provided.

4. { indicates the start of the function’s content (like if-conditionals, etc.)

Taking it apart
float h = Mathf.Sqrt((s1 * s1) + (s2 * s2));
1. Remember, the s1 and s2 are arguments passed in by the

programmers using this function. They can be used like any regular
variable, as this line shows. See the declaration line for the argument
declaration.

2. Other than that, this is just a regular instruction we’re used to in Part 1.
We’re calculating the hypotenuse of a triangle, and setting it to variable
h.

3. Functions can contain as many lines as the programmer wants, so
long as they’re between a pair of {}.

Taking it apart
return h;
1. return, followed by a variable, is what a functions sets the

variable to the left of =.
2. In the line above, the value of h will be returned.
3. Any variable using this function will be set to that variable, e.

g. the h in float h = Hypotenuse(side1, side2);
will be set to the h in return h;

4. Since the function is expected to return a float, this line is
mandatory.

Example
Let’s turn our second homework into a function:
void NegativeOrPositive(int number) {

if(number > 0) {
 Debug.Log(“Positive”);
} else if(number < 0) {
 Debug.Log(“Negative”);
} else {
 Debug.Log(“Zero”);
}

}

Taking it apart
void NegativeOrPositive(int number) {

1. void indicates this function will not return anything.
2. Since the function won’t return anything, return;

becomes optional (but still usable).

More about return
1. return effectively ends a function,

regardless of how many lines are below it, or
whether the function returns anything.

2. Thus, for void functions, return is great
for prematurely ending a function.

Events
The Unity way

Events
Events are functions that are called at specific
moments when the software runs.
e.g. in Unity, void Start() { } runs when
the game starts.

The Unity way
The Unity way of creating events is just declare
a function with the right name and arguments.
For example, to create an event that’s called on
every frame:
void Update() { }

The Unity way
Events are cool! Here’s a way to keep track of how many
seconds have passed:
public float secondsPassed = 0;
void Update() {

secondsPassed = secondsPassed + \
Time.deltaTime;

}

References
See all the events listed under “Messages” in
http://docs.unity3d.
com/ScriptReference/MonoBehaviour.html

http://docs.unity3d.com/ScriptReference/MonoBehaviour.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.html

Q & A
Next tutorial yet to be decided

