
Super-short Scripting
Basics in Unity

About scripting
● Unity uses C# 2.0 or Javascript
● We’ll be going over C# on these slides
○ It has more features

● The rest of these slides assumes you know
either C#, Java, or C++

About C#
● C# is a lot like Java and C++

a. Garbage collected language (no delete!)
b. Almost everything is a pointer
c. Need to define variable type

C# struct and class
● C# class is the same as Java and C++ classes

a. Calling new will create a new pointer
class DemoOne {
 public int x;
 public DemoOne(int p) { x = p; }
}
DemoOne test1 = new DemoOne(1);
DemoOne test2 = test1;
test1.x += 1;
// test1.x is 2, test2.x is 2

C# struct and class
● C# struct is treated like a value than a pointer
struct DemoTwo {
 public int x;
 public DemoTwo(int p) { x = p; }
}
DemoTwo test1 = new DemoTwo(1);
DemoTwo test2 = test1;
test1.x += 1;
// test1.x is 2, test2.x is 1

C# properties
● C# properties are basically getters and setters for a

variable
struct DemoThree {
 private int x;
 public DemoThree(int p) { x = p; }
 public int TheX {
 get { return x; }
 set { x = value; }
 } // use #1: int y = test1.TheX;
} // use #2: test1.TheX = 3;

C# attributes
● C# attributes adds special properties to a variable,

depending on compiler/editor
[System.Serializable]
class DemoFour {

 [SerializedField]
 public int x;

 public DemoFour(int p) { x = p; }
}

C# Homework
● Some things to look into:

a. Function parameter modifiers (ref, out,
params)

b. Difference between const and readonly
c. Anything imported from “using

System.Collections.Generic” (List<T>,
Dictionary<T>, HashSet<T>)

d. What is var?

Back to Unity scripting
● Scripts in Unity manipulates data held in

components for the engine to handle
● Unity’s own graphics, physics, and audio engine

reads that data and apply changes to the
screen/speakers

● Data is stored using an Object-Component model

Object-Component model
● Scenes contain a list of

GameObjects
● Each GameObject contains a

list of Components
● The Hierarchy pane lists all the

GameObjects
● The Inspector lists a

GameObject’s Components

Sample code
public class MoveTransform : MonoBehaviour {
 [SerializedField]
 private Vector3 moveDirection
 private Transform transformCache;
 private void Start () {
 transformCache = GetComponent<Transform>();
 }
 private void Update() {
 Vector3 position = transformCache.position;
 position += moveDirection * Time.deltaTime;
 transformCache.position = position;
 }
}

MonoBehaviour base class
● A script extending MonoBehaviour (colon is used

in C# for extending) turns a script into a special
Component

● Basically turns a script that can be attached to a
GameObject in the Hierarchy pane just like any
other Component

SerializedField attribute
● Adding [SerializedField] above or next to a

member variable declaration exposes that variable
to the inspector pane

● In the example code, we turned a Vector3 (a
struct containing 3 floats: x, y, and z), named
moveDirection available to the inspector

GetComponent<T>()
● GetComponent<T>() grabs a component

attached on the GameObject the script also
happens to be attached to.

● MonoBehaviour’s read-only public property
gameObject and transform corresponds to the
GameObject the script is attached to, and its
Transform (a component containing position,
rotation, and scale) respectively

Start() and Update() events
● In Unity, events are defined by simply declaring the

function with the correct spelling and parameters
● void Start() gets called on the frame the game

starts
● void Update() is called every frame except the

frame Start() is called
● void FixedUpdate() is called every 0.02 seconds

a. Useful for physics calculation, as it adds consistency
b. Called much more often than Update()

Time Properties
● The Time.deltaTime read-only property defines how

much seconds has passed between frames
a. Works both in Update() and FixedUpdate()

● Time.timeScale property allows you to slow down or
quicken time

● Time.time retrieves the number of seconds that
passed since Start()
a. This changes proportional to Time.timeScale

To review
public class MoveTransform : MonoBehaviour {
 [SerializedField]
 private Vector3 moveDirection
 private Transform transformCache;
 private void Start() {
 transformCache = GetComponent<Transform>();
 }
 private void Update() {
 Vector3 position = transformCache.position;
 position += moveDirection * Time.deltaTime;
 transformCache.position = position;
 }
}

Other quick notes
● You can print stuff on Unity’s console by using

Debug.Log()
Debug.Log(“Hello World”);

Other notes
● To get a reference to a GameObject or

Component different from the one the script is
attached to, simply create a serialized variable

[SerializedField]
private GameObject someOtherObject;
● When the variable is exposed to the Inspector,

move the GameObject in-interest to the variable

Other notes
● Transform’s rotation property is a Quaternion

(struct that represents a 1D rotation matrix)
● Using Eular Angles functions are advised
Transform.rotation =
Quaternion.Eular(90, 0, 0);

Vector3 angles =
Transform.rotation.eularAngles;

Other notes
● Scripts attached to Colliders or Rigidbodies has the

following events available to them:
● void OnCollisionEnter(Collision info)
● void OnCollisionExit(Collision info)
● void OnCollisionStay(Collision info)
● void OnTriggerEnter(Collider other)
● void OnTriggerExit(Collider other)
● void OnTriggerStay(Collider other)

Recommended
● Where possible, let Unity do the work! Look into these

components and static classes:
a. AudioSource (sound maker)
b. All Colliders
c. Rigidbody
d. Joints (physics connections)
e. Animator (component for animations)
f. Anything from using UnityEngine.UI; (or UGUI)
g. Mathf and its set of float-related functions
h. Input and its set of input-related functions
i. Physics.Raycast() function

Google Cardboard
● For Google Cardboard, check documentation

on StereoController and its properties
● Also check out GazeInputModule, which

works with with UnityEngine.UI, or UGUI

https://developers.google.com/cardboard/unity/reference/class/stereo-controller
https://developers.google.com/cardboard/unity/reference/class/gaze-input-module

Recommended
● Check the Unify Community for any free

scripts
● The Unity Assets Store is another good place

to look for scripts and assets, too!

